If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+11x-1+5x^2+6x-5=0
We add all the numbers together, and all the variables
3x^2+17x-6=0
a = 3; b = 17; c = -6;
Δ = b2-4ac
Δ = 172-4·3·(-6)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-19}{2*3}=\frac{-36}{6} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+19}{2*3}=\frac{2}{6} =1/3 $
| 2g+10=40 | | 6+6+s=13.5 | | (2x+5)+51=90 | | -x^2-35+7+5x^2+6x=0 | | 8n-13=n | | 16x^2-141x+285+5x-5=0 | | 16x^2+141x+285+5x-5=0 | | .001(2^40)=2^x | | 4h+3=20 | | 16x^2+141x-285+5x-5=0 | | 7.2x=300 | | 170=69-x | | 3x^2+9x+11+4x-7=0 | | 5/3x+x+4x+x+5/3x=300 | | 4x^2-24-20x=0 | | 3x^2+108-36x=0 | | 4x^2+96+40x=0 | | 19x+99=50 | | 4x^2-96+40x=0 | | C=10/6(p)+4/12 | | 2x^2+10-12x=0 | | 8a*36=18a | | -2(19w-10)=-2(18w-10)-2w | | 4(19+6z)=-3(-4-8z) | | 2(5d+5)=10+10d | | -20+18u=-2u+5(4u-4) | | 20-14k=-7(2k-2)+6 | | 1+2w-9=4w+18 | | 50-10x=14+8x | | 2(7j+2)=13+13j | | 17+20v=11v+12v-16 | | -19+12-7g=-7-7g |